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Abstract

In this research, we will study the nilpotence property for a ring R , the polynomial

ring ,which is denoted by R[x], and many types of rings as Armendariz rings, Noetherian

and Artinian rings , principal projective (p.p.) rings, and J-Reduced Rings.

In addition, a generalization of many well known facts, concerning nilpotent polynomials

is presented.

Furthermore we will present many concepts ,which are related to the nilpotency prop-

erty, such as Nilradical, Prime radical, Jacobson radical.

We also classify which of these standard nilpotence properties on ideals passes to poly-

nomial rings, or from ideals in polynomial rings to ideals of coe�cients in the base rings,

which will be our main goal in this research.
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Introduction

In 1870, the American mathematician, Benjamin Pierce �rst introduced the term nilpotent

in the context of his work on the classi�cation of Algebras. In Algebra, an element x of a

ring R is said to be nilpotent if there exists some positive integer n such that xn = 0.

Over the years, the mathematicians had talked about this concept in many papers,

they also had studied its relation with many properties like Nilradical, Prime radical, and

Jacobson radical.

Furthermore, they had studied how it a�ects many types of rings, as Polynomial Rings,

Noetherian rings, Artinian rings, Armendariz Rings, Principal Projective Rings, and other

types of rings which we will review them in our research.

This thesis is divided into four chapters:

Chapter one: In this Chapter we introduce basic de�nitions, fundamental notions,

and several examples. In addition we present two important types of rings which are

Noetherian rings, and Artinian rings. Furhermore we give many notions related to nilpo-

tence which is the main notion in our thesis.

Chapter two: We present the nilpotency properties in details, and apply them on

rings and polynomial rings, In addition we study these properties do in ideals and ele-

ments of these rings. We also apply them on speci�c rings, namely, Principal Projective

Rings and Laurent Polynomial Rings, which we shall study extensively.

Chapter three: In this Chapter we study Armendariz Rings and present their types,
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namely, weak Armendariz and nil Armendariz rings and discuss the relation between them

and Armendariz Rings. Furthermore we study the e�ects of Armendariz,as a property of a

ring, on nilpotency property. In addition for any ring with an automorphism we study the

skew inverse Laurent-serieswise Armendariz rings, and introduce the notions of a strongly

Armendariz ring of inverse skew power series type, and an α-compatible ring.

Chapter four: Includes The Jacobson Radical of a ring, and the relation between it

and nilpotence. We present many important de�nitions like quasi-regular left (or right)

ideal and idempotent element which we need them in order to talk about The Jacobson

Radical. We also study the Prime Radical of a ring. Furthermore we present the J-Reduced

Rings and J-clean Rings that are related to The Jacobson Radical.
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Chapter 1

Preliminaries

The object of the present Chapter is to present basic de�nitions, preliminary notions and

some key results which we shall require for the development of the subject matter in this

thesis.

1.1 De�nitions and Examples

The purpose of this section is to review some basic de�nitions and examples that will be

needed throughout the thesis.

De�nition 1.1.1. [5] A ring R is called semicommutative ring if for any a, b ∈ R ,

ab = 0 implies aRb = 0.

De�nition 1.1.2. An element x of a ring R is called nilpotent if there exists some positive

integer n such that xn = 0.

And a ring is called nil if every element of the ring is nilpotent.

Example 1.1.1. The nilpotent elements of the ring Z8 = {0̄, 1̄, 2̄, 3̄, 4̄, 5̄, 6̄, 7̄} of integers

modulo 8 are 0̄, 2̄, 4̄, 6̄ ,since 2̄3 = 0̄ , 4̄2 = 0̄ , 6̄3 = 0̄.
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We denote the set of all nilpotent elements of R by nil(R).

De�nition 1.1.3. A subring S of a ring R is a nonempty subset of R which is a ring

under the same operations as R.

Equivalently, a non-empty subset S of R is a subring if for a, b ∈ S, then a − b and

ab ∈ S. So S is closed under subtraction and multiplication. It is denoted by S E R.

Example 1.1.2. If n is any integer, then the set of all multiples of nZ is a subring of Z.

De�nition 1.1.4. A nonempty subset I of a ring R is called a two-sided ideal(or simply

an ideal) if

� (I,+) is a subgroup of (R,+), i.e. for a, b ∈ I, a− b ∈ I.

� ∀a ∈ I ,and ∀r ∈ R : a · r ∈ I, i.e. IR ⊆ I.

� ∀r ∈ R ,and ∀a ∈ I : r · a ∈ I, i.e. RI ⊆ I.

De�nition 1.1.5. A subset I of R is called a right ideal of R if

� (I,+) is a subgroup of (R,+), i.e. for a, b ∈ I, a− b ∈ I.

� ∀a ∈ I ,and ∀r ∈ R : a · r ∈ I, i.e. IR ⊆ I.

Similarly, a subset I of R is called a left ideal of R if

� (I,+) is a subgroup of (R,+), i.e. for a, b ∈ I, a− b ∈ I.

� ∀r ∈ R ,and ∀a ∈ I : r · a ∈ I, i.e. RI ⊆ I.

Note that One-sided ideal is either right or left ideal.

De�nition 1.1.6. An ideal, I, of a ring is said to be a nilpotent ideal, if there exists

a natural number k such that Ik = 0 , i.e. I is nilpotent if and only if there is a natural

number k such that the product of any k elements of I is 0.
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Note that an ideal is called nil ideal if each of its elements is nilpotent.

Example 1.1.3. The ideal I = 2Z8 = {0̄, 2̄, 4̄, 6̄} is a nil ideal, since every element in I is

nilpotent:

2̄3 = 0̄ , 4̄2 = 0̄ , 6̄3 = 0̄.

De�nition 1.1.7. The sum of the nilpotent ideals of R, is called theWedderburn radical,

and is denoted by N0(R).

De�nition 1.1.8. An ideal I of R is �nitely generated if there is a �nite subset X of I

such that I =< X > , i.e. such that I can be generated by a �nite set of elements.

i.e., if there is a �nite set X = {x1, x2, . . . , xn} such that I = x1R + x2R + . . .+ xnR.

In the special case where X = {a}, we write < {a} >=< a >= RaR and such an ideal is

called a principal ideal.

De�nition 1.1.9. Let R be a commutative ring,and I an ideal of R, The Quotient Ring

is (R/I,+, ∗) , where ∀a, b ∈ R , the addition and multiplication of cosets of I is de�ned

as :

(+): (I + a) + (I + b) = I + (a+ b) , where I + a = {r + a : r ∈ I}

(∗): (I + a) ∗ (I + b) = I + ab.

De�nition 1.1.10. Let S be a nonempty set and • is some binary operation S × S → S,

then (S, •) is a monoid if it satis�es the following two axioms:

(1) Associativity;

For all a, b and c in S, the equation (a • b) • c = a • (b • c) holds.

(2) Identity element;

There exists an element e in S such that for every element a ∈ S, the equations e • a =

a • e = a hold.
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Note that a submonoid is a subset of the elements of a monoid that are themselves a

monoid under the same monoid operation.

Example 1.1.4. consider the monoid formed by the nonnegative integers under the oper-

ation min(x+ y, 10). Then restricting x and y from all the integers to the set of elements

S = {0, 3, 5, 6, 8, 9, 10} forms a submonoid of the monoid {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} under

the operation min(x+ y, 10).

De�nition 1.1.11. Let (R,+, .) and (R′,+′, .′) be rings, and let f be a function from R

into R′, then f is called homomorphism of R into R′ if for all a, b ∈ R, we have the

following:

(1) f(a+ b) = f(a) +′ f(b).

(2) f(a.b) = f(a).′f(b).

De�nition 1.1.12. A homomorphism of a ring R into a ring R′ is called :

1. monomorphism if f is a one to one function.

2. epimorphism if f is an onto function.

3. isomorphism if f is a one to one and onto function.

De�nition 1.1.13. An automorphism α of a ring R is an isomorphism from R onto

R.

Polynomials's Multiplication Formula.

consider the polynomials;

f(x) = a0 + a1x+ . . .+ an−1x
n−1 + anx

n (1.1)
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and

g(x) = b0 + b1x+ . . .+ bm−1x
m−1 + bmx

m (1.2)

then ,

f(x)g(x) = r0 + r1x+ . . .+ rm+nx
m+n (1.3)

where ri =
i∑

j=0

ajbi−j , i = 0, 1, 2, . . . ,m+ n.

De�nition 1.1.14. The polynomial ring, R[x], in x over a ring R is de�ned as the set

of polynomials in x , of the form :

p(x) = p0 + p1x+ . . .+ pn−1x
n−1 + pnx

n (1.4)

where p0 , p1 , ... , pn , are the coe�cients of p(x), which are elements in a ring R.

Addition and multiplication are de�ned as the de�nitions of addition and multiplication in

R for the coe�cients, the distributive and associative laws, and the exponent rule for x ,

that is, xi.xj = xi+j hold in R[x].

De�nition 1.1.15. The ring of formal power series in x with coe�cients in R is

denoted by R[[x]], and is de�ned as follows. The elements of R[[x]] are in�nite expressions

of the form f(x) =
∑∞

i=0 aix
i in which an ∈ R for all n ∈ N

De�nition 1.1.16. Let R be a ring.A left (right) annihilator of a subset U of R is

denoted by lAnnR(U) = {a ∈ R : aU = 0} , (rAnnR(U) = {a ∈ R : Ua = 0}).

1.2 Noetherian and Artinian Rings

In this section, we describe special types of rings which are the Noetherian and Artinian

Rings.
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De�nition 1.2.1. A ring R is Noetherian Ring if it satis�es the ascending chain con-

dition [ACC] on ideals; that is, given any chain of ideals : I1 ⊆ I2 ⊆ · · · ,there exists an

N ∈ N such that : In = IN for n > N .

Example 1.2.1. [13] (Z,+, ∗) is a Noetherian Ring. This is because any ascending chain

of ideals must terminate at the ideal pZ for some prime number p.

De�nition 1.2.2. An ideal I in a ring R is said to be maximal if I ̸= R and for every

ideal N such that I ⊆ N ⊆ R, either N = I or N = R.

Example 1.2.2. For the ring of integers Z, nZ is a maximal ideal of Z i� n is prime.

Theorem 1.2.1. Let R be a ring. The following are equivalent:

1. R is left Noetherian.

2. Every nonempty set S of left ideals of R has a maximal element I, i.e., there exists

I ∈ S such that J ∈ S, I ⊆ J implies I = J .

3. Every left ideal of R is �nitely generated.

Similar theorems hold for right and two-sided Noetherian rings.

proof:

(1) ⇒ (2) : Suppose there exists a nonempty set of left ideals S of R without a maximal

element. Note for any Ik ∈ S. Since Ik is not maximal in S, we may �nd Ik+1 ∈ S

such that Ik ⊂ Ik+1. Thus since S is not empty, we may construct an in�nite chain

I1 ⊂ I2 ⊂ I3 ⊂ I4 ⊂ . . . which does not stabilize, contradicting the fact that R is left

Noetherian. Thus every nonempty set of left ideals of R must have a maximal element.

(2) ⇒ (1) : Let S = I1 ⊂ I2 ⊂ I3 ⊂ . . . be an ascending chain of left ideals. By assumption

S has a maximal element say IN . Since IN is maximal and IN ⊆ In for all n ≥ N we see

that IN = In for all n ≥ N and so the chain stabilizes. Thus every ascending chain of left

8



ideals stabilizes and so R is left Noetherian.

(3) ⇒ (1) : Let I1 ⊆ I2 ⊆ I3 ⊆ . . . be an ascending chain of left ideals in R. Then I = ∪In is

a left ideal of R. By assumption I = (x1, . . . , xk)L. For each 1 ≤ j ≤ k, xj ∈ I so xj ∈ Inj

for some positive integer nj. Thus {x1, . . . , xk} ⊆ Imax(n1,n2,...,nk) from which it follows that

I ⊆ Imax(n1,n2,...,nk) and hence I = Imax(n1,n2,...,nk). Setting N = max(n1, n2, . . . , nk) it then

follows easily that IN = IN+s for s ∈ N and so the chain stabilizes. Thus any ascending

chain of left ideals in R stabilizes and so R is left Noetherian.

(1) ⇒ (3) : Let I be a left ideal of R. Suppose that I is not �nitely generated as a left ideal of

R. Then in particular I ̸= (0). Hence we may choose nonzero a1 ∈ I. Suppose we have cho-

sen a1, . . . , ak ∈ I. Then since I is not �nitely generated as a left ideal, there exists ak+1 ∈

I − (a1, . . . , ak)L. Thus using the axiom of countable choice we may choose a1, a2, . . . such

that the left ideals (a1, . . . , ak)L = Ik form an in�nite ascending chain of left ideals which

does not stabilize. This contradicts the fact that R is left Noetherian and so we conclude that

every left ideal is �nitely generated.

Theorem 1.2.2. A ring is Noetherian if every ideal is �nitely generated.

proof:

Suppose that R is Noetherian. Let I be an ideal of R, and let

S = {K : K �R,K ⊆ I ,K is finitely generated}.

Then {0R} ∈ S, so S is not empty, so S contains a maximal element M . Then M is �nitely

generated, so there is a �nite subset A of R with M =< A >. Let x ∈ I. Put B = A∪{x}

and J =< B >. Then B is �nite so J is �nitely generated, and J ⊆ I because B ⊆ I.

Therefore J ∈ S. But M ⊆ J , and M is maximal, so M = J , so x ∈ M . This is true

for all x in I, so I ⊆ M . But M ⊆ I, because M ∈ S. Therefore I = M , so I is �nitely

generated.
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Theorem 1.2.3. (Hilbert's Basis Theorem)

Let R be a commutative ring with identity. If R is a Noetherian ring then so is the

polynomial ring R[x].

proof:

Let I ⊆ R[x] be an ideal of R[x], we will show that I is �nitely generated.

Let f1 be an element of least degree in I, and let (g1, . . . , gr) denote the ideal generated by

the polynomials g1, . . . , gr. For i ≥ 1, if (f1, . . . , fi) ̸= I, then choose fi+1 to be an element

of minimal degree in I/(f1, . . . , fi).

If (f1, . . . , fi+1) = I, then we are done.

Let aj be the leading coe�cient of fj. Since R is Noetherian, the ideal (a1, a2, . . .) ⊆ R is

generated by a1, a2, . . . , am for some m ∈ N.

We claim that f1, f2, . . . , fm generates I.

Suppose not. Then our process chose an element fm+1, and am+1 =
∑m

j=1 ujaj for some

uj ∈ R.

Since the degree of fm+1 is greater than or equal to the degree of fj for j = 1, . . . ,m ,then

the polynomial:

g =
m∑
j=1

ujfjx
degfm+1−degfj ∈ (f1, . . . , fm)

has the same leading coe�cient and degree as fm+1. The di�erence fm+1 − g is not in

(f1, f2, . . . , fm) and has degree strictly less than fm+1, a contradiction of our choice of

fm+1.

Thus I = (f1, f2, . . . , fm) is �nitely generated, and we are done.

In the following example we see a ring which is noetherian, but it's ring of polynomials

is not.

Example 1.2.3. [6] Let R be the even integers 2Z, it is a commutative ring that has no

multiplicative identity. So we shall show that 2Z is Noetherian but 2Z[x] is not.
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proof:

Let I be a non-zero ideal of 2Z. If a ∈ I then −a ∈ I because I is a subgroup of (2Z,+).

Let a be the smallest positive element of I. Suppose that b ∈ I with b > 0.

In Z, there are integers q and r such that b = qa+ r and 0 ≤ r < a. Now,

qa = a+ a+ . . .+ a︸ ︷︷ ︸
q times

,

which is in I. Thus b − qa ∈ I and so r ∈ I. Because 0 ≤ r < a, we must have r = 0.

Therefore I = {qa : q ∈ Z} (of course, a is even). So every ideal of 2Z is an ideal of Z.

We know that Z satis�es ACC, so 2Z must also satify ACC. If 2Z[x] is Noetherian then

it is �nitely generated. Suppose that the generators are f1(x), . . . , fn(x), where fi(x) has

degree di. Put N = max{d1, . . . , dn}. Then if g(x) ∈ ⟨{f1(x), . . . , fn(x)}⟩ then either the

degree of g(x) is at most N or every coe�cient in g(x) is divisible by 4.

Therefore 2xN+1 /∈ ⟨{f1(x), . . . , fn(x)}⟩ but 2xN+1 ∈ 2Z[x]. This contradiction shows that

2Z[x] is not Noetherian.

Theorem 1.2.4. Let Mn(R) be the ring of all n× n matrices with entries from R, if the

ring R is not Noetherian then Mn(R) is not Noetherian, and if the ring R has an identity

and R is Noetherian then Mn(R) is Noetherian.

proof:

(1) : Let I1 ⊂ I2 ⊂ . . . ⊂ Im ⊂ Im+1 ⊂ . . . be an in�nite ascending chain of ideals of R.

Then Mn(I1) ⊂ Mn(I2) ⊂ . . . ⊂ Mn(Im) ⊂ Mn(Im+1) ⊂ . . . is an in�nite ascending chain

of ideals of Mn(R).Therefore it is not noetherian.

(2) : Let J1 ⊆ J2 ⊆ . . . be an ascending chain of ideals of Mn(R). Since R has an identity,

there are ideals Im of Mn(R) such that Jm = Mn(Im) for m = 1, 2, . . .. Then I1 ⊆ I2 ⊆ . . ..

Since R is Noetherian, there is some N such that Im = IN whenever m ≥ N . Then

11



Jm = Mn(Im) = Mn(IN) = JN when m ≥ N . So it is noetherian.

De�nition 1.2.3. A ring R is Artinian Ring if it satis�es the descending chain condition

[DCC] on ideals, that is, given any chain of ideals : I1 ⊃ I2 ⊃ · · · , there exists an N ∈ N

such that In = IN for n > N .

Example 1.2.4. Z/nZ or any �nite ring is Artinian.

� A ring is left-Noetherian (Artinian) if it satis�es the ascending (descending)

chain condition on left ideals.

� A ring is right-Noetherian (Artinian) if it satis�es the ascending (descending)

chain condition on right ideals.

� A ring is Noetherian (Artinian) if it is both left- and right-Noetherian (Artinian).

We now give an example of a Noetherian rings that is not Artinian.

Consider the ring of integers Z which is a Noetherian ring , but not Arinian ,since for

an ideal I1 = aZ to contain an ideal I2 = bZ, a must divide b. For I2 to contain a third

ideal, I3 = cZ, b must divide c. If we continue this pattern, each successive ideal must

have a generator that is a multiple of the generator of the ideal immediately previous in

the chain. Since the integers are in�nite, we can keep constructing multiples forever. Our

chain will never bottom out, so it fails to satisfy the descending chain condition. Thus, Z

is not Artinian.
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Chapter 2

Nilpotent Rings

In this Chapter, the nilpotency properties are presented in details, and they are applied

on rings and polynomial rings; In addition, we study which of these properties are true in

ideals and elements of these rings. Also these propositions are checked on speci�c rings,

namely, Principal Projective Rings and Laurent Polynomial Rings.

2.1 Nilpotency Properties

In this section we present many of nilpotency properties, and introduce theorems on rings

and polynomial rings which have these properties.

De�nition 2.1.1. A ring R is called reduced if it has no nonzero nilpotent elements.

Example 2.1.1. The ring of integers Z is a reduced ring.

Note that in a commutative ring R, N0(R) equals the set of all nilpotent elements of R.

But this is not true for non-commutative rings.

Example 2.1.2. Let R be the ring of 2× 2 matrices over Q , then R has only two ideals

0 and R(since Q is a �eld). So N0(R) = 0 but

0 1

0 0


2

= 0.

13



Lemma 2.1.1. In any ring R, the sum of two nilpotent ideals is a nilpotent ideal.

proof:

Let I, J be ideals in R such that In = 0 and Jm = 0 for n,m ∈ N. We claim that (I +

J)n+m−1 = 0. That is, the product of n+m−1 elements of the form u+v,u ∈ I , v ∈ J , is 0.

Such a product can be written as a sum of products w = w1w2 . . . wn+m−1 where each wi ∈

I∪J . If at least n of these wi 's are in I, then w = 0 as In = 0. If the number of the wi 's be-

longing to I is smaller than n, then at least m of them lie in J , and hence w = 0 since Jm =

0.

Corollary 2.1.1. We can generalize the previous lemma to any sum of �nitely many

nilpotent ideals.

Lemma 2.1.2. [10] An arbitrary sum of nil ideals is a nil ideal.

proof:

It su�ces to show that the sum of two nil ideals is again a nil ideal , so let I, J be nil ideals

and a+b = z ∈ I+J , we have ak = 0 for some k ∈ N, hence zk = ak+c for some suitable

c ∈ J .

Since J is a nil ideal , we get ct = 0 for some t ∈ N and ztk = 0.

Theorem 2.1.1. [14] Let R be a �nitely generated commutative ring without unity. Then

the following are equivalent:

(1) R is nil.

(2) R is nilpotent.

(3) every proper ideal of R is nilpotent.

(4) every proper ideal of R is nil.
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proof:

(1) ⇒ (2): Since every element of R is nilpotent, every generator of R is nilpotent. Let

x1, . . . , xn be a set of generators for R with corresponding indices of nilpotency k1, . . . , kn.

So, the product of an arbitrary k = k1 + . . .+ kn factors is

(m1,1x1 + r1,1x1 + . . .+mn,1xn + rn,1xn) . . . (m1,kx1 + r1,kx1 + . . .+mn,kxn + rn,kxn)

where each mi,j ∈ Z and each ri,j∈ R . Observe that this product is a sum where each term

is of the form cxi1 . . . xik , where c is an integer or an element of R and the xij 's may be

repeated. So, each term has at least k generator factors. Consider an arbitrary term of the

sum. For each xi, let αi be the number of generator factors equal to xi. So , α1+. . .+αk > k.

If αi < ki for each i, then it would be the case that α1 + . . .+ αk < k1 + . . .+ kk = k,

a contradiction. Thus, there is some j with αj > kj . So this term has a factor of xj
kj ,

which is equal to zero, since xj has index of nilpotency kj . Thus, each term of the sum is

equal to zero, and so the entire sum is equal to zero. Therefore, the product of any k terms

is equal to zero, hence Rk = 0.

(2) ⇒ (3):By the de�nition of nil ideals.

(3) ⇒ (4):Since every every proper ideal of R is nilpotent, so they are also nil.

(4) ⇒ (1):We proceed by contradiction. Assume that every proper ideal of R is nil. Suppose

that R contains an element a which is not nilpotent. Then a2 is also not nilpotent. Note

that a2 ∈ aR = {ar | r ∈ R}. Thus, aR = R. Hence there is some e ∈ R such that a = ae.

Let r ∈ R. Then there is some x ∈ R such that r = ax. So

re = (ax)e = (ae)x = ax = r

Thus e is a multiplicative identity of R , a contradiction. Therefore, R is nil.

Remark 2.1.1. In a commutative ring with 1 , a �nitely generated nil ideal is nilpotent.
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proof:

Let K be a �nitely generated nil ideal of R , K = k1R+. . .+kmR , with ki ∈ K. since each ki

is nilpotent , then so is the ideal.

Proposition 2.1.1. [14] If R is a nil ring, then xy ̸= y for all nonzero x, y ∈ R. If R

is a �nite ring, then R is nil if and only if for every nonzero x, y ∈ R, it is the case that

xy ̸= y.

proof:

Let x and y be nonzero elements of the nil ring R. So xn = 0 for some positive integer n. If

xy = y then 0 = (xn)y = (xn−1)(xy) = (xn−1)y = (xn−2)(xy) = (xn−2)(y) = . . . = xy = y

,a contradiction. Thus, xy ̸= y.

Now, assume that R is �nite and suppose that for every nonzero x, y ∈ R, xy ̸= y. Let

x ∈ R. Let n,m be positive integers with n < m. So, if xn ̸= 0 and xm ̸= 0, then

xn ̸= xnxm−n = xm. So, each positive power of x which is not zero must be distinct. But,

R is �nite, so it must be the case that xk = 0 for some k. Thus, every element of R is

nilpotent.

De�nition 2.1.2. Let R be a ring and let I be an ideal of R. We say that I is a prime

ideal if whenever ab ∈ I then either a ∈ I or b ∈ I.

Lemma 2.1.3. N =
∩
Pα.

Proof

Let x ∈ N , so x is a nilpotent element in R. Now xn = 0 ∈ P , so x.xn−1 = xn ∈ P , but P

is a prime ideal, so x ∈ P or xn−1 ∈ P .

If we assume that xn−1 ∈ P and x /∈ P , then xn−1 ∈ P ⇒ x.xn−2 = xn−1 ∈ P ⇒ x ∈ P or

xn−2 ∈ P , if we assume that xn−2 ∈ P and x /∈ P and continue as a previous steps n − 1

times, we will get that x.xn−(n−1) ∈ P , so if we take the choice x ∈ P and xn−(n−1) /∈ P ,
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this will give us that x ∈ P and x /∈ P which is a contradiction.

So from the �rst step, we have that x ∈ P for every prime ideal. Therefore x ∈
∩
Pα,

hence N ⊆
∩

Pα.

For the converse, we will show that for any non-nilpotent element a, there is some prime

ideal that doesn't contain a.

Let a be a non-nilpotent element in R, and S be the set of all ideals of R that don't contain

any element of the form an. Since 0 ∈ S, so S ̸= ϕ, and by Zorn's lemma, S has a maximal

element M .

it su�ces to show that M is a prime ideal, so suppose otherwise, x, y ∈ M but xy ∈ M ,

then the set of elements z for which xz ∈ M is an ideal of R that properly contains M , this

implies that it contains am,m ∈ Z, so an+m ∈ M , by assumption of M , an = 0 /∈ M which

is a contradiction. Hence M is a prime ideal which doesn't contain a. so we get
∩
Pα ⊆ N.

Therefore N =
∩
Pα as we need.

Theorem 2.1.2. if R is a commutative Noetherian ring, then a power series f(x) over a

commutative ring R is nilpotent if and only if each coe�cient of f(x) is nilpotent.

proof.

⇒ : Let Pα be the collection of prime ideals of R and let N be the ideal of nilpotent

elements of R and consider Lemma (2.1.3), now for each α, Pα[[x]] is a prime ideal of

R[[x]]. Since f(x) is nilpotent,f(x) ∈ Pα[[X]] for each α. Hence f(x) ∈
∩
Pα[[X]] =

(
∩

Pα)[[X]] = N [[x]]; that is, each coe�cient of f(x) is nilpotent. Suppose f is nilpo-

tent , since R is Noetherian ring , the set of coe�cients of f(x) (Af) is �nitely gener-

ated. Since f is nilpotent , each ai is nilpotent ,i.e. each coe�cient of f(x) is nilpo-

tent.

⇐ : let f(x) =
∞∑
i=0

aixi, suppose Af is nilpotent ,and (Af )
m = 0 , then ami = 0 for all i. On

the other hand if ami = 0 for i ≥ 0 ,then there is a positive integer k such that (Af )
k = 0
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, so fk = 0 ,hence f is nilpotent .

Lemma 2.1.4. Let R be a right noetherian ring, then the sum of nilpotent ideals in R is

nilpotent ideal.

proof:

Let B =
∑
i∈I

Ai be the sum of nilpotent ideals in R. Since R is noetherian (i.e. right noethe-

rian), B is �nitely generated as right ideal. Suppose B = (x1, . . . , xn), then each xi lies in

�nitely many Ai′s , hence B is contained in the sum of a �nite number of Ai′s, say (after

reindexing if necessary) A1, . . . , An. Thus B = A1+. . .+An, then by corollary (2.1.1) , B is

nilpotent.

Remark 2.1.2. In a right artinian ring, every nil right ideal is nilpotent.

De�nition 2.1.3. By a maximal nilpotent ideal, we mean a nilpotent ideal that is not

properly contained in a larger nilpotent ideal.

Lemma 2.1.5. If a ring R has a maximal nilpotent ideal N , then N contains all nilpotent

ideals of R.

proof:

If I is another nilpotent ideal, then I+N is again a nilpotent ideal by Lemma (2.1.1).Because

of the maximality of N we must have I+N = N , and thus I ⊆ N .

Thus, a maximal nilpotent ideal , if it exists , is unique and is equal to the sum of all

nilpotent ideals N0(R). However, not every ring has such an ideal. That is to say, the

sum of all nilpotent ideals of a ring is not always nilpotent(although it is nil for each of its
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elements " Lemma (2.1.1) ").

An example of this, the maximal nilpotent ideal 2Z8 of the ring Z8.

The nilradical of a commutative ring is the set of all nilpotent elements in the ring

, which was denoted previously by nil(R).

But in the case of a noncommutative ring , there are several analogues of the nilradical

, like lower nilradical and upper nilradical.

De�nition 2.1.4. The upper nilradical of a ring R is the sum of all nil ideals , and it

is denoted by Nil∗(R).

De�nition 2.1.5. The lower nilradical of a ring R is the intersection of all prime ideals

, we denote it by Nil∗(R).

Note that the lower nilradical is also called the prime radical.

Recall that for an element a ∈ R, (a) = RaR, is the ideal generated by a in R.

De�nition 2.1.6. An ideal I in a ring R is said to be a semiprime ideal if, for any ideal

J of R, J2 ⊆ I implies that J ⊆ I. (For instance, a prime ideal is always semiprime.)

De�nition 2.1.7. A ring R is called a prime (resp., semiprime) ring if (0) is a prime

(resp., semiprime) ideal.

Proposition 2.1.2. [8] For any ring R, the following are equivalent:

(1) R is a semiprime ring.

(2) Nil∗(R) = 0

(3) R has no nonzero nilpotent ideals.

(4) R has no nonzero nilpotent left ideals.
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proof:

(1) ⇐⇒ (2) is clear from De�nition (2.1.7). Next we shall prove

(4) ⇒ (3) ⇒ (1) ⇒ (4).

The �rst two implications are also clear.

For (1) ⇒ (4), let R be a semiprime ring and let I be a nilpotent left ideal. Choose n(≥ 1)

minimal such that In = 0. If n > 1, then (In−1)2 = I2n−2 ⊆ In = 0, implies that In−1 = 0,

which contradicts the minimality of n. Thus n = 1, and I = 0. Hence R has no nonzero

nilpotent left ideals.

Kothe's Conjecture states that, If Nil∗(R) = 0, then R has no nonzero nil one-sided

ideals.

Proposition 2.1.3. [7] Let R be a semiprime ring with the ascending chain condition

(ACC) for right annihilators. Then R has no nonzero nil one-sided ideals.

proof:

Let I be a nonzero one-sided ideal of R and let 0 ̸= a ∈ I with rAnn(a) as large as possible.

Since R is semiprime, there is an element x ∈ R such that axa ̸= 0. Thus axa is a nonzero

element of I such that rAnn(a) ⊆ rAnn(axa). So rAnn(a) = rAnn(axa) . We have

ax ̸= 0, i.e., x /∈ rAnn(a) Thus x /∈ rAnn(axa). So, (ax)2 ̸= 0. Hence xax /∈ rAnn(a)

implying that (ax)3 ̸= 0. Therefore, ax and hence, also xa is not nilpotent and ax ∈ I or

xa ∈ I.

Lemma 2.1.6. Assume that R satis�es the ACC for right annihilators annr(a) = {x ∈

R : ax = 0}, where a ∈ R. Then:
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1. Any nil one-sided ideal I is contained in Nil∗R.

2. Any nonzero nil right (resp., left) ideal J contains a nonzero nilpotent right (resp.,

left) ideal.

In particular, if R is also semiprime, then every nil one-sided ideal is zero.

proof:

(1) : Assume I is a nil right ideal ( Nil∗(R). Among the elements in I/Nil∗(R), choose

a such that annr(a) is maximal. For any x ∈ R, we claim that axa ∈ Nil∗(R). For this,

we may assume that axa ̸= 0. Since ax ∈ I is nilpotent, there exists an integer k > 1 such

that (ax)k = 0 ̸= (ax)k−1. Then

annr(axa) ) annr(a)

since x(ax)k−2 belongs to annr(axa) but not to annr(a). The maximality of annr(a) now

implies that axa ∈ Nil∗(R), as claimed. Since R/Nil∗(R) is semiprime, this implies that

a ∈ Nil∗(R), a contradiction.

If I is a nil left ideal instead, then for any a′ ∈ I, a′R is a nil right ideal, so a′R ⊆ Nil∗(R).

Therefore, we also have I ⊆ Nil∗(R).

(2) : Among the nonzero elements of J , choose b such that annr(b) is maximal. It su�ces

to show here that bxb = 0 for all x ∈ R, for then we'll have (bR)2 = (Rb)2 = 0. If J is

a right ideal, we can repeat the argument in (1) to get bxb = 0. Now assume J is a left

ideal and bxb ̸= 0. Then xb ∈ J is nilpotent, so there exists an integer k > 1 such that

(xb)k = 0 ̸= (xb)k−1. But then xb ∈ annr((xb)
k−1) and xb /∈ annr(b), so we have

annr(b) ( annr((xb)
k−1),

contradiction.
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The last part of the lemma (2.1.6) above leads to the following theorem of J.Levitzki.

Theorem 2.1.3. [10] Levitzki's Theorem. Let R be a right noetherian ring. Then every

nil one-sided ideal I of R is nilpotent. We have Nil∗R = Nil∗R, and this is the largest

nilpotent right (resp., left) ideal of R.

proof:

In view of (1) in the Lemma (2.1.6) above, it su�ces to show that Nil∗R is nilpotent. Since

R is right noetherian, there exists a maximal nilpotent ideal N in R. Then R/N has no

nonzero nilpotent ideals, so R/N is semiprime. This shows that N ⊇ Nil∗R, and hence

Nil∗R = N is nilpotent.

De�nition 2.1.8. The Jacobson radical of a ring R is the intersection of all maximal

ideals of R,we denote it by J(R).

Example 2.1.3. The Jacobson radical of the ring Z/12Z is 6Z/12Z, which is the inter-

section of the maximal ideals 2Z/12Z and 3Z/12Z.

De�nition 2.1.9. A set S ⊆ R is said to be locally nilpotent if every �nite subset of S

is nilpotent.

De�nition 2.1.10. Levitsky radical is the sum of all locally nilpotent ideals,we denote

it by L-rad(R).

De�nition 2.1.11. A subset A of a ring R is called left(resp. right)T-nilpotent if, for

any

sequence of elements {a1, a2, . . .} ⊆ A, there exists an integer n ≥ 1 such that ;

a1a2 . . . an = 0 (resp. an . . . a2a1 = 0).

The set is called T-nilpotent if it is both left and right T-nilpotent.

22



De�nition 2.1.12. The index of nilpotency of a nilpotent element x in a ring R is

the least positive integer n such that xn = 0.

The index of nilpotency of a subset I of a ring R is the supremum of the indices of

nilpotency of all nilpotent elements in I. If such a supremum is �nite , then I is said to

be of bounded index of nilpotency.

Example 2.1.4. In the ring Z8 = {0̄, 1̄, 2̄, 3̄, 4̄, 5̄, 6̄, 7̄} of integers modulo 8, the index of

the nilpotent element 2̄ is equal to 3 (since 2̄3 = 0̄).

And if I = {1̄, 2̄, 3̄, 4̄, 5̄, 6̄} is a subset of Z8 , then the index of nilpotency of I is equal to

3. (Since for the nilpotent elements in I, 2̄3 = 0̄ , 4̄2 = 0̄ , 6̄3 = 0̄).

Remark 2.1.3. A nil subset N of a ring R has bounded index ≤ t if at = 0 for all a in

N . In fact N(R) = {a ∈ R : Ra is nil of bounded index}.

De�nition 2.1.13. Let R be a ring. We say R has property (∗∗), whenever f(x) =

a0 + a1x+ . . .+ amx
m, g(x) = b0 + b1x+ . . .+ bnx

n are elements of (R[x],+, ◦) and f ◦ g

∈ nil(R)[x], then aibj ∈ nil(R) for i = 1, . . . ,m , j = 0, 1, . . . , n.

Proposition 2.1.4. Let I be a nil ideal of a ring R. Then R̄ = R/I has property (∗∗) if

and only if R has property (∗∗).

proof:

Claim: If I is a nil ideal, then nil(R) = nil(R).

proof of the claim: We denote R = R/I, and nil(R) = nil(R)/I.

Firstly,
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nil(R) = {m+ I ∈ R/I : m+ I is nilpotent}

= {m+ I : (m+ I)k = I}

= {m+ I : mk + I = I}

= {m+ I : mk ∈ I}.

and

nil(R) = nil(R)/I

= {m+ I : m ∈ nil(R)}

= {m+ I : mk = 0}

but (m+ I)k = mk + I = 0 + I = I.

Therefore nil(R) = nil(R).

Now let f(x) =
m∑
i=0

aixi and g(x) =
n∑

j=0

bjxj be elements of R[x], so f =
m∑
i=0

aixi, and

g =
n∑

j=0

bjxj , where ai and bj ∈ R. Now f ◦ g ∈ nil(R)[x], if and only if

f ◦ g = f ◦ g

= (
m∑
i=0

aixi) ◦ (
n∑

j=0

bjxj) ∈ nil(R)[x].

Also, aibj = (ai + I)(bj + I) = aibj + I.

Since aibj ∈ nil(R), so aibj ∈ nil(R)/I = nil(R) = nil(R), for i = 1, . . . ,m and

j = 0, 1, . . . , n.

Hence R has a property (∗∗) if and only if R/I has a property (∗∗).
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2.2 Nilpotency of polynomial rings

In this section we further the study of nilpotent elements in R[x].

Lemma 2.2.1. [4] Let f(x) be a polynomial over a commutative ring R , f(x) is nilpotent

if and only if each coe�cient of f(x) is nilpotent.

proof:

Let p(x) =
n∑

i=0

aixi be nilpotent. We proceed by induction on n, the degree of p(x). If

p(x) = a0 has degree 0, then (p(x))m = am0 = 0 for some m. Thus a0 is nilpotent, and all

of the coe�cients of p(x) are nilpotent.

Now suppose now that for some d ≥ 0, if r(x) is a nilpotent polynomial of degree at most

d, then all of the coe�cients of r(x) are nilpotent. Now suppose p(x) has degree n = d+ 1

and that (p(x))m = 0 for some m ≥ 1. We prove by induction that the nm coe�cient of

(p(x))m is amn . For the base case m = 1, the n coe�cient of p(x) is indeed an. Suppose

now that for some m ≥ 1, the nm coe�cient of p(x) is amn .

Now the n(m + 1) coe�cient of (p(x))m+1 is by de�nition
∑

i+j=n(m+1)

aibj, where bj is the

jth coe�cient of (p(x))m. If i > n, then ai does not exist. (Equivalently, is zero.) If i < n,

then j > nm, so that bj does not exist. (Equivalently, is zero.) Thus the only remaining

term is the (i, j) = (n, nm) term, and we have
∑

i+j=n(m+1)

aibj = anbnm = am+1
n . Thus the

result holds.

Now the nm coe�cient of (p(x))m is amn on one hand and zero on the other. Thus

amn = 0, so that an is nilpotent. Now p(x)−anx
n is a unit (in a commutative ring ,the sum

of a unit u and a nilpotent element x is a unit ,since u−1x is nilpotent, so 1+u−1x is a unit,

and thus u(1+u−1x) = u+x is a unit), and has degree at most d. Thus by the induction hy-

pothesis all coe�cients of p(x)−anx
n are nilpotent, and so all coe�cients of p(x) are nilpo-
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tent.

But the result in the previous Lemma is not true in general for noncommutative rings.

For example, let R = Mn(k), the n× n full matrix ring over some ring k ̸= 0.

Consider the polynomial f(x) = e12 + (e11 − e22)x− e21x
2, where the eij 's are the matrix

units. In this case f(x)2 = 0, but e11 − e22 is not nilpotent. (In fact, when n = 2 this is a

unit.)

The trouble seems to arise from the fact that if f(x) is nilpotent, then so is the ideal < f >

over a commutative ring, but not necessarily over a noncommutative ring. Indeed, for a

general ring R, f(x)R[x] is a nilpotent right ideal of R[x] if and only if AfR is a nilpotent

right ideal of R, where Af is the set of coe�cients of f(x).

Theorem 2.2.1. [4] Let R be a ring, and let f(x) =
m∑
i=0

aixi and g(x) =
n∑

j=0

ajxj be

polynomials in R[x]. If f(x)Rg(x)R = 0, then aiRbjR is a nilpotent right ideal, for each

pair (i, j).

proof:

We work by induction on k = i + j. If k = 0 then i = j = 0. We know a0Rb0R = 0 by

looking at the degree zero term in f(x)Rg(x)R = 0. Thus a0Rb0R is trivially nilpotent.

So, we may assume k ≥ 1 and that the result is true for all values smaller than k as the

inductive assumption. From the degree k coe�cient in f(x)Rg(x)R = 0 we obtain

k∑
t=0

atrbk−ts = 0 (2.1)

for arbitrary r,s ∈ R. In particular, specializing r in Equation (2.1) to ub0v (with u,v ∈

R) we have
k∑

t=0

atub0vbk−ts = 0. But then akub0vb0s = −
k−1∑
t=0

atub0vbk−ts ∈
∑
t<k

atRb0R.

The right ideal on the right hand side is nilpotent (since it is a �nite sum of such, by
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inductive hypothesis). Thus, (akRb0R)2 ⊂ akRb0Rb0R is a nilpotent right ideal, hence so

is akRb0R. Repeat the argument in the previous paragraph by specializing r to ubjv instead

of ub0v, and induct on j. Note that the previous paragraph consists of checking the base

case. In this more general case, Equation (2.1) then yields

ak−jubjvbjs = −
( k−j−1∑

t=0

atubjvbk−ts

)
−

( k∑
t=k−j+1

atubjvbk−ts

)

In particular, ak−1RbjRbjR ⊆
( ∑

t<k−j

atRbjR

)
+

( ∑
i′=j′=k,j′<j

a′iRb′jR

)
, which is nilpo-

tent by the inductive assumptions on k and j. By the same reasoning as in the previous

paragraph, we obtain that ak−jRbjR is nilpotent, �nishing both inductions.

Proposition 2.2.1. [4] Let R be a ring, and let f(x) =
m∑
i=0

aixi , g(x) =
n∑

j=0

ajxj ∈ R[x].

The set f(x)Rg(x)R is nilpotent i� aiRbjR is a nilpotent right ideal for each pair (i, j).

proof:

⇒ : by the previous Theorem.

⇐ : is a consequence of the fact that there are only �nitely many pairs (i, j).

Proposition 2.2.2. [4] Let n ∈ Z > 0, let R be a ring, and for each 1 ≤ l ≤ n, let

fl(x) =
nl∑
i=0

ai,lxi ∈ R[x]. The set
∏n

l=1 fl(x)R is nilpotent if and only if
∏n

l=1(ail,lR) is a

nilpotent right ideal, for all choices 0 ≤ il ≤ nl (for each l).

proof:

⇒ : we simplify to the case
∏n

l=1 fl(x)R ,so let S = (i1, i2, . . . , in)|0 ≤ il ≤ nl be the set

of n-tuples whose entries consist of indices for the coe�cients of the polynomials. We can

order S by saying

(i1, i2, . . . , in) < (j1, j2, . . . , jn)

27



if and only if there exists an integer m in the range 1 ≤ m ≤ n so that
n∑

l=m′
il =

n∑
l=m′

jl

when 1 ≤ m′ < m but
n∑

l=m

il <
n∑

l=m

jl . Given an n-tuple s = (i1, i2, . . . , in) ∈ S, let

Bs =
∏n

l=1(ail,lR). We work by induction on the well-ordered set S to prove that Bs is

nilpotent for each s ∈ S. The claim is clearly true for the n-tuple s0 = (0, 0, . . . , 0). Fix

s = (i1, i2, . . . , in) ∈ S, and suppose by induction that the claim is true for all n-tuples

t < s. Set k =
∑

il . Looking at the degree k coe�cient in the equation
∏n

l=1 fl(x)R = 0

yields ∑
j1+j2+...+jn=k

( n∏
l=1

(ajl,lrl)

)
= 0 (2.2)

with rl ∈ R arbitrary. Specializing each rl to sl,l
∏n

l′=l1
(ail′ ,l′sl,l′) (for arbitrary sl,l′ ∈ R,

for all l′ > l then, Equation (2.2) implies that Cs =
∏n

l=1(
∏n

l′=l(ail′ , l
′R)) belongs to

∑
t<s

Bt,

which is nilpotent. On the other hand Bs
n ⊆ Cs, and so Bs is similarly nilpotent.This

completes the induction.

⇐ : this implication is easy.

Corollary 2.2.1. Let R be a ring and f(x) ∈ R[[x]]. Suppose AfR is �nitely generated.

The right ideal f(x)R[[x]] is nilpotent if and only if AfR is nilpotent.

2.3 Principal Projective Rings (p.p. rings)

In this section we talk about the Principal Projective Rings (brie�y p.p. rings), and study

its nilpotency.

De�nition 2.3.1. A ring R is called a right(left) p.p. ring if each principal right(left)

ideal of R is projective, or equivalently, if the right(left) annihilator of each element of R

is generated by an idempotent. A ring is called a p.p. ring if it is both right and left p.p.

ring.
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De�nition 2.3.2. [19] Let R be a ring. For a subset X of a ring R, we de�ne NR(X) =

{a ∈ R : xa ∈ nil(R), for all x ∈ X}, which is called the nilpotent annihilator of X in

R.

If X is a singleton, say X = r, we use NR(r) in place of NR({r}).

Clearly, for any nonempty subset X of R, we have ;

NR(X) = {a ∈ R : xa ∈ nil(R), for all x ∈ X}

NL(X) = {b ∈ R : bx ∈ nil(R), for all x ∈ X}.

Example 2.3.1. [19] Let Z be the ring of integers and T2(Z) the 2 × 2 upper triangular

matrix ring over Z. We consider the subset X =

{2 0

0 2

}
, so ;

NT2(Z)(X) =

{0 m

0 0

 ,m ∈ Z
}
.

Proposition 2.3.1. [19] Let X, Y be subsets of R. Then, we have the following:

(1) X ⊆ Y implies NR(X) ⊇ NR(Y ).

(2) X ⊆ NR(NR(X)).

(3) NR(X) = NR(NR(NR(X))).

proof:

(1): by de�nition.

(2): it is clear , since ∀x′ ∈ X , we have x′a′ ∈ nil(R) , ∀a′ ∈ NR(X).

(3): Applying (2) to NR(X), we obtain NR(X) ⊆ NR(NR(NR(X))).

Since X ⊆ NR(NR(X)), we have NR(X) ⊇ NR(NR(NR(X))), by (1). Therefore,

NR(X) = NR(NR(NR(X))).
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Lemma 2.3.1. Let R be a subring of S. Then, for any subset X of R, we have NR(X) =

NS(X) ∩R.

proof.

Let r ∈ NR(X). Then, r ∈ R and xr ∈ nil(R), for each x ∈ X, and so xr ∈ nil(S), for

each x ∈ X. Hence, r ∈ NS(X) ∩R and so NR(X) ⊆ NS(X) ∩R.

Assume that a ∈ NS(X)∩R. Then, a ∈ R and xa ∈ nil(S), for each x ∈ X. As X ⊆ R, we

have xa ∈ nil(R), for each x ∈ X. Thus a ∈ NR(X) and so NR(X) ⊇ NS(X) ∩R. There-

fore, NR(X) = NS(X)∩R.

De�nition 2.3.3. [21] A ring R is said to be a nilpotent p.p. ring if for any element

p ∈ R with NR(p) ̸= R , NR(p) is generated as a right ideal by a nilpotent element.

Lemma 2.3.2. [15] Let R be a semicommutative ring. If ab ∈ nil(R), for a, b ∈ R, then

aRbR ⊆ nil(R).

proof:

Suppose ab ∈ nil(R). Then, abs ∈ nil(R) for any s ∈ R, since nil(R) is an ideal of

R. Thus, there exists a positive integer n such that (abs)n = absabs . . . abs = 0, and so

arbsarbs . . . arbs = 0, for any r ∈ R, because R is a semicommutative ring. Hence, arbs ∈

nil(R), for each r ∈ R and s ∈ R. Therefore aRbR ⊆ nil(R).

Proposition 2.3.2. [5] Let R be a semicommutative ring. Then, R is a nilpotent p.p. ring

if and only if R[x] is a nilpotent p.p. ring.

proof:

Suppose that R is a nilpotent p.p. ring. Let f(x) = a0 + a1x + . . . + amx
m ∈ R[x], with
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NR[x](f(x)) ̸= R[x]. We show that NR[x](f(x)) is generated by a nilpotent element. If

g(x) = b0 + b1x+ . . .+ bnx
n ∈ NR[x](f(x)), then we have

f(x)g(x) =

( m∑
i=0

aix
i

)( n∑
j=0

bjx
j

)
=

m+n∑
s=0

( ∑
i+j=s

aibj

)
xs ∈ nil(R[x]).

We have the following system of equations by Lemma (2.3.3):

△s =
∑
i+j=s

aibj ∈ nil(R[x]), s = 0, 1, . . . ,m+ n.

We will show that aibj ∈ nil(R) by induction on i+j. If i+j = 0, then a0b0 ∈ nil(R), b0a0 ∈

nil(R).

Now, suppose that s is a positive integer such that aibj ∈ nil(R), when i+ j < s. We will

show that aibj ∈ nil(R), when i+ j = s.

Consider the following equation:

(∗) : △s = a0bs + a1bs−1 + . . .+ asb0 ∈ nil(R).

Multiplying Eq.(∗) by b0 from left, we have

b0asb0 = b0 △s −(b0a0)bs − (b0a1)bs−1 − . . .− (b0as−1)b1.

By the induction hypothesis, aib0 ∈ nil(R), for each i, 0 ≤ i < s, and so b0ai ∈ nil(R), for

each i, 0 ≤ i < s. Thus, b0asb0 ∈ nil(R) and so b0as ∈ nil(R), asb0 ∈ nil(R).

Multiplying Eq.(∗) by b1, b2, . . . , bs−1 from the left side, respectively, yields as−1b1 ∈ nil(R),

as−2b2 ∈ nil(R), . . . , a0bs ∈ nil(R), in turn. This means that aibj ∈ nil(R), when i+ j = s.

Therefore, by induction we obtain aibj ∈ nil(R), for each i, j, and so bj ∈ NR(ai), for each

i, 0 ≤ i ≤ m and j, 0 ≤ j ≤ n. If NR(ai) = R, for each i, 0 ≤ i ≤ m, then air ∈ nil(R) for
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each i, 0 ≤ i ≤ m and each r ∈ R. So, for any u(x) = u0+u1x+ . . .+utx
t ∈ R[x], we have

aiuj ∈ nil(R) for each i, 0 ≤ i ≤ m and each j, 0 ≤ j ≤ t. Thus,

f(x)u(x) =
m+t∑
s=0

( ∑
i+j=s

aiuj

)
xs ∈ nil(R[x]).

by Lemma (2.3.3), and so u(x) ∈ NR[x](f(x)). Thus, we obtain NR[x](f(x)) = R[x]. This

is contrary to the fact that NR[x](f(x)) ̸= R[x]. Thus, there exists an i, 0 ≤ i ≤ m, such

that NR(ai) ̸= R. Since R is a nilpotent p.p. ring, there exists some c ∈ nil(R) with

NR(ai) = cR. Now, we show that NR[x](f(x)) = cR[x]. Since bj ∈ NR(ai) = cR for each

j, 0 ≤ j ≤ n, there exists rj ∈ R such that bj = crj , and so g(x) = c(r0+r1x+ . . .+rnx
n) ∈

cR[x]. Hence, NR[x](f(x)) ⊆ cR[x]. On the other hand, for h(x) = h0+h1x+ . . .+hpx
p ∈

R[x], we have

f(x).ch(x) =

( m∑
i=0

aix
i

)( p∑
j=1

chjx
j

)
=

m+p∑
s=0

( ∑
i+j=s

aichj

)
xs ∈ nil(R[x]).

Since nil(R) is an ideal of R and c ∈ nil(R), we obtain aichj ∈ nil(R) and so f(x).ch(x) ∈

nil(R[x]), by Lemma (2.3.3). Hence, NR[x](f(x)) ⊇ c.R[x], and so NR[x](f(x)) = c.R[x],

where c ∈ nil(R[x]). Therefore, R[x] is a nilpotent p.p. ring.

Conversely, assume that R[x] is a nilpotent p.p. ring. Let p ∈ R, with NR(p) ̸= R. If

NR[x](p) = R[x], then we have NR(p) = NR[x](p) ∩ R = R, by Lemma (2.3.1), which is a

contradiction. Thus, we obtain NR[x](p) ̸= R[x]. Since R[x] is a nilpotent p.p. ring, there

exists u(x) = u0 + u1x + . . . + usx
s ∈ nil(R[x]) such that NR[x](p) = u(x).R[x]. Since

u(x) = u0 + u1x + . . . + usx
s ∈ nil(R[x]), we obtain ui ∈ nil(R) for each i, 0 ≤ i ≤ s, by

Lemma (2.3.3). Now, we show that NR(p) = u0.R. Since u0 ∈ nil(R) and nil(R) is an

ideal of R, we have pu0r ∈ nil(R) for each r ∈ R. Thus, u0r ∈ NR(p), for each r ∈ R,

and so NR(p) ⊇ u0.R. Suppose that m ∈ NR(p). Then, m ∈ NR[x](p), and so there exists

32



p(x) = p0+ p1x+ . . .+ pqx
q ∈ R[x] such that m = u(x)p(x). Hence, m = u0p0 ∈ u0.R, and

so NR(p) ⊆ u0.R. Therefore, NR(p) = u0.R, and so R is a nilpotent p.p. ring.

Proposition 2.3.3. [19] Let R be a semicommutative ring. Then, f(x) = a0+ a1x+ . . .+

anx
n ∈ R[x] is a nilpotent element of R[x] if and only if ai ∈ nil(R), for all 0 ≤ i ≤ n.

proof:

⇒ : Assume f(x) is nilpotent, for n = 0 (constant polynomial), we have f(x) = a0, and

(f(x))m = 0, which implies that (a0)m = 0, thus all coe�cient of f(x) are nilpotent.

Now by induction on n, we get that each coe�cient of f(x) is nilpotent (i.e. ∈ nil(R)).

⇐ : Suppose that ai ∈ nil(R), for all 0 ≤ i ≤ n, we need to show that f(x) is nilpotent.

For m = index of nilpotency of {a0, a1, . . . an}, we have:

(f(x))m = (a0 + a1x+ . . .+ anx
n)m

=
m∑
j=1

(
m

j

)
(a0 + a1x+ . . .+ an−1x

n−1)j(anx
n)m−j

=
m∑
j=1

(
m

j

)
(a0 + a1x+ . . .+ an−1x

n−1)j((an)
mxnm)−j

= (
m∑
j=1

(
m

j

)
(a0 + a1x+ . . .+ an−1x

n−1)j) ∗ (0). (Since(an)
m = 0)

= 0.

Therefore, (f(x)m) = 0 , so f(x) is nilpotent in R[x].
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2.4 Laurent Polynomial Ring

In this section we introduce the Laurent Polynomial Rings, and conclude how some of the

nilpotency properties are passing from the ring to this type of rings.

De�nition 2.4.1. [19] The ring of Laurent polynomial in x, with coe�cients in a

ring R, consists of all formal sums
n∑

i=k

mix
i with obvious addition and multiplication, where

mi ∈ R and k, n are (possibly negative) integers.

We denote this ring by R[x;x−1].

If f(x) is a nilpotent element of R[x;x−1], then we say that f(x) ∈ nil(R[x;x−1]).

Lemma 2.4.1. Let R be a semicommutative ring. Then, f(x) =
n∑

i=k

aix
i ∈ R[x;x−1] is a

nilpotent element of R[x; x−1] if and only if ai ∈ nil(R), for each i, k ≤ i ≤ n.

proof:

There exists a positive integer t such that f(x).xt ∈ R[x]. Note that (f(x))k = 0 if and only

if (f(x).xt)
k
= 0, where k is a positive integer. Then, the proof is complete by Proposition

(2.3.3).

Lemma 2.4.2. [22] Let R be a semicommutative ring, f(x) =
m∑
i=k

aix
i ∈ R[x;x−1] and

g(x) =
n∑
j=l

ajx
j ∈ R[x; x−1]. Then, we have f(x)g(x) ∈ nil(R[x;x−1]) if and only if

aibj ∈ nil(R), for each i, k ≤ i ≤ m and for each j, l ≤ j ≤ n.

proof.

Suppose that aibj ∈ nil(R)), for each i, k ≤ i ≤ m and for each j, l ≤ j ≤ n. Then,

f(x)g(x) =
m+n∑
s=k+l

( ∑
i+j=s

aibj

)
xs ∈ nil(R[x;x−1]),
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by Lemma (2.4.1). So it su�ces to show that aibj ∈ nil(R) for each i, j, when f(x)g(x) ∈

nil(R[x;x−1]. There exist positive integers u and v such that f(x)xu ∈ R[x] and g(x)xv ∈

R[x]. Since (f(x)g(x))k = 0 if and only if (f(x)xug(x)xv)k = 0, where k is a positive

integer.

Same as the proof of Proposition (2.3.2), we obtain that aibj ∈ nil(R), for each i, j.

Proposition 2.4.1. [19] Let R be a semicommutative ring. If R is a nilpotent p.p. ring,

then so is R[x;x−1].

proof:

Let f(x) =
m∑
i=k

aixi ∈ R[x; x−1], with NR[x; x
−1](f(x)) ̸= R[x; x−1]. We show that

NR[x; x
−1](f(x)) is generated by a nilpotent element. If g(x) =

n∑
j=l

bjxj ∈ NR[x; x
−1](f(x)),

then f(x)g(x) ∈ nil(R[x;x−1]). Then, we obtain aibj ∈ nil(R), for each i, j, by lemma

(2.4.2), and so bj ∈ NR(ai) for each j, l ≤ j ≤ n and each i, k ≤ i ≤ m. If NR(ai) = R,

for each i, k ≤ i ≤ m, then for each h(x) =
t∑

j=s

hjxj ∈ R[x; x−1], we have aihj ∈ nil(R),

for each i, k ≤ i ≤ m and s ≤ j ≤ t. Thus, f(x)h(x) ∈ nil(R[x; x−1]), by lemma (2.4.2),

and so h(x) ∈ NR[x;x
−1](f(x)). Hence, we obtain NR[x; x

−1](f(x)) = R[x;x−1], which

is a contradiction. Thus, there exists an i, k ≤ i ≤ m, such that NR(ai) ̸= R. Since

R is a nilpotent p.p. ring, there exists some c ∈ nil(R), with NR(ai) = cR. Now, we

show that NR[x; x
−1](f(x)) = c.R[x;x−1]. Since bj ∈ NR(ai), for each j, l ≤ j ≤ n, there

exists rj ∈ R such that bj = c.rj. Thus, g(x) =
n∑
j=l

bjxj = c(
n∑
j=l

rjxj) ∈ c.R[x; x−1].

Hence, NR[x;x
−1](f(x)) ⊆ c.R[x; x−1]. Let q(x) =

t∑
j=v

qjxj ∈ R[x;x−1]. Since c ∈ nil(R)

and nil(R) is an ideal of R, we obtain aicqj ∈ nil(R), for each i, j, and so f(x).cq(x) ∈

nil(R[x; x−1]), by Lemma (2.4.2). Thus, NR[x;x
−1](f(x)) ⊇ c.R[x; x−1].

Hence, NR[x; x
−1](f(x)) = c.R[x;x−1], where c ∈ nil(R[x;x−1]). Therefore, R[x;x−1] is a

nilpotent p.p. ring.
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Chapter 3

Armendariz Rings

In this Chapter we study Armendariz Rings and present its types, namely, weak Armen-

dariz and nil Armendariz rings and discuss the relation between these rings and Armendariz

Rings. Furthermore we study the e�ects of Armendariz property of a ring on nilpotency

property. In addition we study the skew inverse Laurent-serieswise Armendariz rings for

any ring with an automorphism, and introduce the notions of a strongly Armendariz ring

of inverse skew power series type, and an α-compatible ring.

3.1 Armendariz rings

We study in this secion the Armendariz Rings, and see that Armendariz property pass

from the ring into its polynomial ring.

De�nition 3.1.1. [7] A ring R is called Armendariz if for any f(x) =
n∑

i=0

aixi ,and

g(x) =
n∑

j=0

bjxj ∈ R[x], f(x)g(x) = 0 implies that aibj = 0 for all i and j.

if R is an Armendariz ring, then nil(R) is a subring of R and nil(R)[x] = nil(R[x]).

Hence nil(R) is a locally nilpotent subring of R, when R is an Armendariz ring.
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The following example shows that there exist non Armendariz rings such that the set of

its nilpotent elements is a locally nilpotent ideal.

Example 3.1.1. [7] Let Z be the ring of integers and let

R =


a c

0 b

 ; a− b ≡ c ≡ 0(mod2)


. Then R is not Armendariz. Since

nil(R) =


0 c

0 0

 ; c ≡ 0(mod2)


, hence nil(R) is a locally nilpotent ideal of R.

De�nition 3.1.2. If f(x) ∈ R[x], coef(f(x)) denotes the subset of R of the coe�cients of

f(x) , if A ⊆ R[x], then coef(A) is the set of all the coe�cients of all polynomials in A.

De�nition 3.1.3. [2] A ring R is said to be weak Armendariz if whenever two polyno-

mials f(x), g(x) ∈ R[x] satisfy f(x)g(x) = 0 , then ab ∈ nil(R) for all a ∈ coef(f(x)) and

b ∈ coef(g(x)).

Proposition 3.1.1. [19] Suppose R is an Armendariz ring, if f1, f2, . . . , fn ∈ R[x] are

such that f1f2 . . . fn = 0, then a1a2 . . . an = 0, where ai is a coe�cient of fi.

proof:

Suppose f1f2 . . . fn = 0, and let ai be any coe�cient of fi. Now we have f1(f2 . . . fn) = 0,so

aib = 0 for any coe�cient b of f2 . . . fn.Thus a1f2 . . . fn = 0, thus (a1f2)(f3 . . . fn) = 0. Since

a1a2 is a coe�cient of a1f2, we have (a1a2)c = 0 for each coe�cient c of f3 . . . fn. Hence

a1a2f3 . . . fn = 0. Continuing, we see that a1a2 . . . an = 0
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Theorem 3.1.1. [19] A ring R is Armendariz i� R[x] is Armendariz.

proof:

⇐: Any subring of an Armendariz ring is again Armendariz.

⇒: Suppose that R is an Armendariz ring, and let f(T ), g(T ) ∈ R[x][T ] with fg = 0. write

f(T ) = f0+f1T+. . .+fnT
n , and g(T ) = g0+g1T+. . .+gmT

m, where fi, gj ∈ R[x]. We need

each figj = 0. Let k = deg(f0)+. . .+deg(fn)+deg(g0)+. . .+deg(gm), where the degree is as

polynomials in x , and the degree of the zero polynomial is taken to be zero. Then f(xk) =

f0+f1x
k1+ . . .+fnx

kn , g(xk) = g0+g1x
k1+ . . .+gmx

km ∈ R[x], and the set of coe�cients

of f ′
is(resp., g

′
is) equals the set of coe�cients of f(xk)(resp.g(xk)). Since f(T )g(T ) = 0,

and x commutes with elements of R, f(xk)g(xk) = 0. Since R is an Armendariz ring , each

coe�cient of fi annihilates each coe�cient of gj. Thus figj = 0, therefore R[x] is an Armen-

dariz ring.

Theorem 3.1.2. [19] Let R be a ring and n ≥ 2, then R[x]/(xn) is Armendariz if and

only if R is a reduced ring.

proof:

⇒: suppose that R[x]/(xn) is Armendariz, let r ∈ R with rn = 0. Since r and x̄ commutes,

0 = rn − x̄nT n = (r− x̄T )(rn−1 + rn−2x̄T + . . .+ x̄n−1T n−1), where T is an indeterminate,

and x̄ ∈ R[x]/(xn). Now R[x]/(xn) Armendariz gives rx̄n−1 = 0, and hence r = 0, it easily

follow that R is reduced.

⇐: suppose that R is reduced.Denote x̄ ∈ R[x]/(xn) by u, so R[x]/(xn) = R[u] = R+Ru+

. . . + Run−1, where u commutes with elements of R and un = 0. Let f, g ∈ R[u][T ] with

fg = 0. We can write f = f0+f1u+. . .+fn−1u
n−1, and g = g0+g1u+. . .+gn−1u

n−1, where

fi, gi ∈ R[T ]. Now for fiui and gju
j, where i+ j ≥ n, the coe�cients of fiui annihilate the

coe�cients of gjuj since ui+j = 0. We show that if i + j < n , then figj = 0 and hence

38



since R is reduced and thus Armendarize, the coe�cients of fi annihilate the coe�cients

of gj. Thus the coe�cients of f annihilate the coe�cients of g.

Now 0 = fg = (f0 + f1u + . . . + fn−1u
n−1)(g0 + g1u + . . . + gn−1u

n−1) = f0g0 + (f0g1 +

f1g0)u+ (f0g2 + f1g1 + f2g0)u
2 + . . .+ (f0gn−1 + f1gn−2 + . . .+ fn−1g0)u

n−1.

So,

0 = f0g0 = f0g1 + f1g0 = f0g2 + f1g1 + f2g0 = . . . = f0gn−1 + f1gn−2 + . . .+ fn−1g0

Now if i+ j < n, we see that figj = 0.

3.2 Nil-Armendariz rings

In this section, we introduce a type of Armendariz rings which is the Nil-Armendariz rings,

and see the relation between them.

De�nition 3.2.1. [7] A ring R is said to be nil-Armendariz if whenever two polynomials

f(x), g(x) ∈ R[x] satisfy f(x)g(x) ∈ nil(R)[x], then ab ∈ nil(R) for all a ∈ coef(f(x)) and

b ∈ coef(g(x)).

Proposition 3.2.1. Let R be a ring and I E R a nil ideal. Then R is nil-Armendariz if

and only if R/I is nil-Armendariz.

proof:

We denote R = R/I . Since I is nil, then nil(R) = nil(R). Hence f(x)g(x) ∈ nil(R)[x]

if and only if f(x)g(x) ∈ nil(R)[x]. And, if a ∈ coef(f(x)) and b ∈ coef(g(x)), then

ab ∈ nil(R) if and only if ab ∈ nil(R).

ThereforeR is nil-Armendariz if and only ifR is nil-Armendariz.
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Lemma 3.2.1. Let R be a nil-Armendariz ring and n ≥ 2. If f1(x), f2(x), . . . , fn(x) ∈ R[x]

such that f1(x)f2(x) . . . fn(x) ∈ nil(R)[x] , then if ak ∈ coef(fk(x)) for k = 1, . . . , n, we

have a1a2 . . . an ∈ nil(R).

proof:

We use induction on n. The case n = 2 is clear by de�nition of nil-Armendariz ring.

Suppose n > 2. Consider h(x) = f1(x) . . . fn−1(x). Then h(x)fn(x) ∈ nil(R)[x] and hence,

since R is nil-Armendariz ahan ∈ nil(R) , where ah ∈ coef(h(x)) and an ∈ coef(fn).

Therefore, for all an ∈ coef(fn(x)),

f1(x) . . . fn−2(x)(fn−1(x)an) = h(x)an ∈ nil(R)[x],

and by induction, since the coe�cients of fn−1(x)an are an−1an , where an−1 is a coe�cient

of fn−1(x), we obtain a1a2 . . . an−1an ∈ nil(R) for ak ∈ coef(fk(x)), k = 1, . . . , n.

Lemma 3.2.2. [2] Let R be a nil-Armendariz ring.

(a) If a, b are nilpotent, then ab is nilpotent.

(b) If a, b, c are nilpotent, then (a+ b)c and c(a+ b) are nilpotent.

(c) If a, b, c are nilpotent, then a+ bc is nilpotent.

(d) If a, b are nilpotent, then a− b is nilpotent.

proof:

(a): Suppose a, b are nilpotent and bm = 0. Then (a−abx)(1+bx+b2x2+. . .+bm−1xm−1) =

a ∈ nil(R)[x]. Since R is nil-Armendariz, so ab ∈ nil(R) [by Lemma (3.2.1) ].

(b): Suppose a, b, c are nilpotent and an = bm = 0. Then (1 + . . . + an−1xn−1)(1 −

ax)(1 − bx)(1 + . . . + bm−1xm−1)c = c. If we multiply the polynomials in the middle, we

obtain (1 + . . . + an−1xn−1)(1 − (a + b)x + abx2)(1 + . . . + bm−1xm−1)c = c. Now, since

R is nil-Armendariz, and c ∈ nil(R)[x], by Lemma (3.2.1), we can choose the appropriate
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coe�cients from each polynomial to obtain (a + b)c ∈ nil(R). Similarly we see that

c(a+ b) ∈ nil(R).

(c): Suppose a, b, c are nilpotent. By (a) , bc is nilpotent, and by (b), b(a + bc) is also

nilpotent. Hence

(1− bx)(c+ (a+ bc)x) = c+ ax− b(a+ bc)x2 ∈ nil(R)[x].

Now, since R is nil-Armendariz, 1.(a+ bc) = a+ bc is nilpotent.

(d): Suppose a, b are nilpotent. Now by applying (c) several times we can see that,

since a2, a and −b are nilpotent, a2 − ab is nilpotent; hence a2 − ab− ba is nilpotent; hence

a2−ab−ba+b2 is nilpotent. Therefore (a−b)2 is nilpotent, which means that a−b is nilpo-

tent.

Theorem 3.2.1. [2] If R is a nil-Armendariz ring, then nil(R) is a subring of R.

proof:

Let a, b ∈ nil(R), we need to show that both a − b and ab are nilpotent elements (i.e. ∈

nil(R)).Which is satis�ed by Lemma (3.2.2).

Lemma 3.2.3. If R is a nil-Armendariz ring with no nonzero nil ideals, then R is Ar-

mendariz.

proof:

Since R has no nonzero nil ideals, it does not contain any nonzero nil one-sided ideals.

Suppose f(x), g(x) ∈ R[x] such that f(x)g(x) = 0. Let a ∈ coef(f(x)) and b ∈ coef(g(x)).

For all r ∈ R, since rf(x)g(x) = 0, R is nil-Armendariz, and ra ∈ coef(rf(x)), we have that

rab is nilpotent. Hence Rab is a nil one-sided ideal. Then Rab = 0 and thus ab = 0. There-
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fore R is Armendariz.

Lemma 3.2.4. [7] If R is nil-Armendariz, then nil(R[x]) ⊆ nil(R)[x].

proof:

Suppose f(x) ∈ nil(R[x]) and f(x)m = 0. By Lemma (3.2.1), we have that a1 . . . am ∈

nil(R) , where ai ∈ coef(f(x)) for i = 1, . . . ,m. In particular, for every a ∈ coef(f), am

is nilpotent.

Therefore a ∈ nil(R) for all a ∈ coef(f(x)) and hence f(x) ∈ nil(R)[x].

Theorem 3.2.2. [2] Let R be a nil-Armendariz ring. Then, R[x] is nil-Armendariz if and

only if nil(R[x]) = nil(R)[x].

proof:

(⇒): If R[x] is nil-Armendariz, by Theorem (3.2.1), we have that nil(R[x]) is a subring of

R[x]. Clearly nil(R)xk is nil for any k ≥ 0, and thus nil(R)[x] ⊆ nil(R[x]). Now, since R is

a subring of R[x], it is nil-Armendariz and, by Lemma (3.2.4), we have the other inclusion.

Hence nil(R[x]) = nil(R)[x].

(⇐): Now suppose that nil(R[x]) = nil(R)[x]. Let f(y), g(y) ∈ (R[x])[y] such that

f(y)g(y) ∈ nil(R[x])[y]. If

f(y) = f0 + f1y + . . .+ fny
n, where fi =

si∑
k=1

fikx
k,

g(y) = g0 + g1y + . . .+ gmy
m, where gj =

tj∑
l=1

fjlx
l,

and M > max(si, tj i,j) , then, by evaluating at xM , we obtain polynomials f ′(x) = f(xM)

and g′(x) = g(xM) whose coe�cients are all the f ′
ik
s and g′jls. Also, since nil(R[x]) =
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nil(R)[x], f ′(x)g′(x) ∈ nil(R)[x]. Since R is nil-Armendariz, fikgjl ∈ nil(R). Now, since

nil(R) is a subring of R, we have that figj ∈ nil(R)[x]. Finally, since nil(R)[x] =

nil(R[x]), figj is nilpotent, henceR[x] is nil-Armendariz.

Proposition 3.2.2. If R is an Armendariz ring then R is nil-Armendariz.

proof:

Suppose f(x), g(x) ∈ R[x] such that f(x)g(x) ∈ nil(R)[x]. Since R is Armendariz, by

Lemma (3.2.4), f(x)g(x) is nilpotent and there exists k ≥ 1 such that (f(x)g(x))k = 0.

Hence, since R is Armendariz, for all a ∈ coef(f(x)) and b ∈ coef(g(x)), by choosing the

corresponding coe�cient in each polynomial, we have abab . . . ab = 0 and thus, ab ∈ nil(R).

Therefore R is nil-Armendariz.

Hence nil-Armendariz rings stand as a generalization of Armendariz rings and a partic-

ular case of weak Armendariz rings. For those rings, the property of being nil-Armendariz

clearly passes to subrings, and in fact, most of the results can be proved for nil-Armendariz

rings.

3.3 skew inverse Laurent-serieswise Armendariz

In this section, for any ring with an automorphism we study the skew inverse Laurent-

serieswise Armendariz rings, and introduce the notions of a strongly Armendariz ring of

inverse skew power series type, and an α-compatible ring.

De�nition 3.3.1. [9] Let R be a ring equipped with an automorphism α. We denote by

R((x−1, α)) the inverse skew Laurent series ring over the coe�cient ring R formed
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by formal series

f(x) =
n∑

i=−∞

aix
i,

where x is a variable, n is an integer and ai ∈ R. In the ring R((x−1, α)), addition is

de�ned as usual and multiplication is de�ned with respect to the relation:

∀i, xia = αi(a)xi.

Now we will study the ring R((x−1, α)), and introduce a skew inverse Laurent-serieswise

Armendariz ring as a generalization of the standard Armendariz condition from polynomi-

als to skew inverse Laurent series.

De�nition 3.3.2. [9] A ring R is called power-serieswise Armendariz, if aibj = 0, for

all i, j , whenever power series f(x) =
∞∑
i=0

aix
i, g(x) =

∞∑
j=0

bjx
j in R[[x]] satisfy f(x)g(x) =

0.

De�nition 3.3.3. [9] A ring R is called a skew inverse Laurent-serieswise Armen-

dariz (or simply, SIL -Armendariz) ring, if for each elements f(x) =
n∑

i=−∞
aix

i ,and

g(x) =
m∑

j=−∞
bjx

j ∈ R((x−1, α)) , f(x)g(x) = 0 implies that aiα
i(bj) = 0 for each i ≤ n

and j ≤ m.

Theorem 3.3.1. [9] Let R be a ring with an automorphism α and A = R((x−1, α)). Then

the following statements are equivalent:

1. R is SIL-Armendariz.

2. For each f(x) =
0∑

i=−∞
aix

i ,and g(x) =
0∑

j=−∞
bjx

j in A, if f(x)g(x) = 0, then

aiα
i(bj) = 0, for each i, j ≤ 0.

3. For each f(x) =
n∑

i=−∞
aix

i ,and g(x) =
m∑

j=−∞
bjx

j in A, if f(x)g(x) = 0, then a0bj = 0,

for each j ≤ m.
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4. For each f(x) =
0∑

i=−∞
aix

i ,and g(x) =
0∑

j=−∞
bjx

j in A, if f(x)g(x) = 0, then a0bj = 0,

for each j ≤ 0.

proof:

(1) ⇒ (2) : From de�nition, take n = m = 0.

(2) ⇒ (3) : It is clear.

(3) ⇒ (4) : Take n = m = 0.

(4) ⇒ (1): Let f(x) =
n∑

i=−∞
aix

i ,and g(x) =
m∑

j=−∞
bjx

j be series of R((x−1, α)) with

f(x)g(x) = 0. We have;

f(x)g(x) = (
n∑

i=−∞

aix
i)(

m∑
j=−∞

bjx
j)

= (
n∑

i=−∞

aix
i−n)xn(

m∑
j=−∞

bjx
j)

= (
n∑

i=−∞

aix
i−n)(

m∑
j=−∞

αn(bj)x
j+n) = 0. (a.1)

By multiplying x−n−m from the right-hand side of Eq. (a.1), we obtain

(
n∑

i=−∞

aix
i−n)(

m∑
j=−∞

αn(bj)x
j−m) = 0.

So amα
m(bj) = 0, for each j ≤ m, by (4). This implies that

f(x)g(x) = (
n−1∑

i=−∞

aix
i)(

m∑
j=−∞

bjx
j)

= (
n−1∑

i=−∞

aix
i−n+1)xn−1(

m∑
j=−∞

bjx
j)

= (
n−1∑

i=−∞

aix
i−n+1)(

m∑
j=−∞

αn−1(bj)x
j+n−1) = 0 (a.2)
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By multiplying x−n−m+1 from the right-hand side of Eq. (a.2), we obtain

(
n−1∑

i=−∞

aix
i−n+1)(

m∑
j=−∞

αn−1(bj)x
j−m = 0.

Hence am−1α
m−1(bj) = 0, for each j ≤ m, by (4). By continuing in this way, we get

aiα
i(bj) = 0, for each i ≤ n and j ≤ m and the result follows.

De�nition 3.3.4. [9] Let R be a ring with an automorphism α. We say that R is a

strongly Armendariz ring of inverse skew power series type (or simply, strongly

ISP -Armendariz ring), if R satis�es the following condition.

∀ f(x), g(x) ∈ R((x−1, α)), f(x)g(x) = 0 ⇐⇒ ab = 0, ∀ a ∈ Cf , b ∈ Cg

where Cf and Cg are the sets of all coe�cients of elements f(x) and g(x), respectively.

De�nition 3.3.5. [7] A ring R is α-compatible if for each a, b ∈ R, ab = 0 implies

aα(b) = 0.

Lemma 3.3.1. [9] Let α be an automorphism of a ring R. If R is strongly ISP −

Armendariz, then we have the following statements:

1. R is an α-compatible ring.

2. If ab = 0, then aαk(b) = αk(a)b = 0 for all integers k.

3. If αk(a)b = 0 for some integer k, then ab = 0.

Recall that N0(R), N∗(R), Lrad(R), N∗(R), nil(R) and rad(R) denote the Wedderburn

radical, the lower nil radical, the Levitsky radical, the upper nil radical, the set of all

nilpotent elements and the Jacobson radical, respectively.
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Theorem 3.3.2. [7] Let R be a ring with an automorphism α and A1, A2 be two subrings

of R((x−1, α)), as follows:

A1 = {f(x) =
n∑

i=−m

aix
i : ai ∈ R,m, n ∈ N}

A2 = {f(x) =
n∑

i=0

aix
i : ai ∈ R, n ∈ N}

If R is a strongly ISP-Armendariz ring, then (rad(A1)∩R) and (rad(A2)∩R) are nil.

proof:

Let a ∈ R be an element of rad(A1). Then 1 − ax is an invertible element in A1, (since

if 1 − ax is not invertible, then it is contained in a maximal ideal M of R. In particular,

since x is from M , we see that 1 ∈ M which is a contradiction). So there exists an element
n∑

i=−m

bix
i ∈ A1 such that

(1− ax)(
n∑

i=−m

bix
i) = 1.

Therefore we have:

b−m = 0;

b−m+1 − aα(b−m) = 0;

...

b−1 − aα(b−2) = 0;

b0 − aα(b−1) = 1;

b1 − aα(b0) = 0;

...

bn − aα(bn−1) = 0;

aα(bn) = 0.
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So by replacing b−m = 0 in Equation b−m+1 − aα(b−m) = 0, we get b−m+1 = 0. By

continuing in this way, we obtain b−m = . . . = b−1 = 0 and b0 = 1. Now, by replacing

b0 = 1 in Equation b1 − aα(b0) = 0, we have b1 = a. So b2 − aα(b1) = 0 implies that

b2 = aα(a).

Continuing in this way, we get aα(a)α2(a) . . . αn(a) = 0 and hence an+1 = 0, since R is

α−compatible by Lemma (3.3.1). Thus a ∈ nil(R) and so (rad(A1)∩R) is nil. Similarly, we

can show that (rad(A2)∩R) is nil and the proof is complete.
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Chapter 4

Nilpotence and The Jacobson Radical

This chapter studies the relation between the Jacobson Radical of a ring, and the relation

between it and nilpotence. We present many important de�nitions like quasi-regular left

(or right) ideal and idempotent element which we need in order to talk about the Jacobson

Radical. We also study the Prime Radical of a ring. Furthermore we present the J-Reduced

Rings and J-clean Rings that are related to the Jacobson Radical.

4.1 Nilpotence and The Jacobson Radical

In this section, we present The Jacobson Radical of a ring, some of its properties (Jacobson

Semisimple), and its relation with nilpotence. We also present many important de�nitions

like quasi-regular left (or right) ideal and idempotent element.

In a ring (R,+, .) , we de�ne the circle operation ◦ on R, as a◦b = a+b−ab, ∀a, b ∈ R.

De�nition 4.1.1. An element a ∈ R of a ring R is said to be left quasi-regular (resp.

right), if there exists an element x ∈ R such that x ◦ a = 0 (resp. a ◦ x = 0). In this

case the element x is called a left (resp. right) quasi-inverse of the element a. And
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an element is called quasi-regular element if it is left and right quasi-regular.

A ring R is called quasi-regular ring, if each of its elements is quasi-regular.

De�nition 4.1.2. Let A be an ideal (one- or two-sided) in a ring R. If each element of

A is quasi-regular, then A is a quasi-regular ideal.

De�nition 4.1.3. an idempotent element, or simply an idempotent, of a ring is an

element e such that e2 = e.

Proposition 4.1.1. An idempotent element e of a ring R is left quasi-regular if and only

if e = 0.

proof:

(⇒) If e = e2 and x is a left-quasi-inverse of e, then x + e − xe = 0, and therefore

xe+ e2 − xe2 = 0. Thus e2 = 0. But e2 = e therefore e = 0.

(⇐) if e = 0, then trivially an idempotent element e of a ring R is left quasi-regular.

Corollary 4.1.1. The Jacobson radical of a ring does not contain nonzero idempotents.

If a, b are elements of a ring R with unity element e, then

(b− e)(a− e) = ba− b− a+ e = e− (b ◦ a).

Thus (b− e)(a− e) = e if and only if b ◦ a = 0, hence it follows that a is quasi-regular

if and only if a− e is a unit.

Proposition 4.1.2. Every nilpotent element of a ring R is left quasi-regular.
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proof:

If an = 0 with some exponent n ≥ 2, then put x = −a − a2 − . . . − an−1. Now x ◦ a =

x+ a−xa = −a2− . . .−an−1− (−a2− . . .− an) = 0, and therefore x is a left quasi-inverse

of a.

Note.

Quasi-regularity is important because it provides elementary characterizations of the Ja-

cobson radical for rings without an identity element:

� The Jacobson radical of a ring is the sum of all quasi-regular left (or right) ideals.

� The Jacobson radical of a ring is the largest quasi-regular ideal of the ring.

Lemma 4.1.1. Let x be a nilpotent element of a ring R, then 1 + x is a unit of R.

proof:

x is nilpotent, so xn = 0 for some n > 0. Then, by direct computation, we see that

(1 + x)(1− x+ x2 + . . .+ (−1)nxn) = 1 + (−1)nxn+1 = 1 + 0 = 1,

therefore,1+x is a unit inR.

Proposition 4.1.3. [1] For a ring R, the following are equivalent:

(a) x ∈ J(R).

(b) For all r ∈ R, 1+ rx has a left inverse (i.e. there is an s ∈ R such that s(1+ rx) = 1).

(c) For all r ∈ R, 1 + rx is a unit.

proof:

(a) ⇒ (b) : Since J(R) is a left ideal, it su�ces to show x ∈ J(R) ⇒ 1+x has a left inverse.
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If not, then R(1 + x) is a proper left ideal and hence there is a maximal left ideal M with

1 + x ∈ M . But x ∈ M , so 1 ∈ M , a contradiction.

(b) ⇒ (c) : By assumption1 + rx has left inverse, say s(1 + rx) = 1. Hence s = 1 − srx

also has a left inverse, again by assumption; say ts = 1. But if an element in a ring has

both a left and right inverse, the two are equal. Here we conclude t = 1 + rx. Hence s is

a 2−sided inverse of 1 + rx, i.e. 1 + rx is a unit.

(c) ⇒ (a) : Suppose 1+ rx is a unit for all r, and let M be a maximal left ideal. If x /∈ M ,

then Rx+M = R, so there is an r ∈ R and y ∈ M such that rx+ y = 1. Then y = 1− rx

is a unit by assumption, so 1 ∈ Ry and Ry = R, contradicting y ∈ M .

Proposition 4.1.4. If I is a left ideal consisting of nilpotent elements, then I ⊂ J(R).

proof:

If x ∈ I then rx is nilpotent for all r ∈ R, so 1+rx is a unit for all r ∈ R. Hence, by Proposi-

tion (4.1.3) x ∈ J(R).

Corollary 4.1.2. If R is commutative, then nil(R) ⊂ J(R).

Equality need not hold in this corollary. For example if R = Z(p) then nil(R) = 0 and

J(R) = (p).

Lemma 4.1.2. Let I be any ideal of R lying in J(R). Then J(R/I) = J(R)/I.

proof:

J(R/I) =
∩
(M + I), where M is a maximal ideal of the ring R, but since I ⊆ J(R), then∩

(M+I) = (
∩
M)+I, so J(R/I) = J(R)/I.
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De�nition 4.1.4. A ring R is called Jacobson semisimple if J(R) = 0.

Note that Jacobson semisimple rings are also called semiprimitive rings.

Lemma 4.1.3. If a left (resp., right) ideal I ⊆ R is nil, then I ⊆ J(R).

proof:

Let y ∈ I. Then for any x ∈ R, xy ∈ I is nilpotent. It follows that 1− xy is a unit. There-

fore, by Proposition (4.1.3), we have y ∈ J(R). Therefore I ⊆ J(R).

Lemma 4.1.4. There are equivalent ways of expressing the de�nition of maximal ideals.

Given a ring R and a proper ideal I of R (that is I ̸= R), I is a maximal ideal of R if any

of the following equivalent conditions hold:

� There exists no other proper ideal J of R so that I * J .

� For any ideal J with I ⊆ J , either J = I or J = R.

� The quotient ring R/I is a simple ring (where a simple ring is a non-zero ring that

has no two-sided ideal besides the zero ideal and itself).

Theorem 4.1.1. Let R be a ring , then J(R/J) = 0.

proof:

The maximal ideals of the ring R/J are precisely the ideals of the form M/J , where M is a

maximal ideal of R. So by lemma (4.1.4), we get that J(R/J) = 0.

Theorem 4.1.2. Let R be a left artinian ring. Then J(R) is the largest nilpotent left ideal,

and it is also the largest nilpotent right ideal.
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proof:

In view of Lemma (4.1.3), we are done if we can show that J = J(R) is nilpotent. Applying

the left DCC (descending chain condition) to

J ⊇ J2 ⊇ J3 ⊇ . . . ,

there exists an integer k such that

Jk = Jk+1 = . . . = I (say).

We claim that I = 0. Indeed, if I ̸= 0, then, among all left ideals L such that I.L ̸= 0,

we can choose a minimal one, say L0 (by the left DCC). Fix an element a ∈ L0 such that

I.a ̸= 0. Then

I.(Ia) = I2a = Ia ̸= 0

so by the minimality of L0, we have I.a = L0. Thus, a = ya for some y ∈ I ⊆ rad(R). But

then (1−y)a = 0 implies that a = 0 since 1−y is a unit. This is a contradiction, so we must

have I = Jk = 0.

The theorem we just proved and the lemma preceding it have the following pleasant

consequence:

Corollary 4.1.3. In a left artinian ring, any nil left ideal is nilpotent.
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4.2 The Prime Radical

In this section, we study the Prime Radical of a ring and review the strongly nilpotent

concept which is related to the Prime Radical.

Recall that the prime radical is the intersection of all the prime ideals, and we will

denote it by P (R).

Lemma 4.2.1. A ring R is semiprime i� P (R) = 0.

proof:

⇒ : Suppose that R is a semiprime ring, so (0) is a semiprime ideal (i.e. for any ideal J ,

J2 ⊆ 0 ⇒ J ⊆ 0).

Recall that every prime ideal is a semiprime ideal, we have (0) a semiprime ideal and it is

the smallest semiprime ideal, so P (R) =
∩

S, (S : prime ideals) is a prime ideal and so it

is a semiprime ideal, since (0) is the smallest one , we get that P (R) = 0.

⇐ : suppose that P (R) = 0. Now P (R) is a prime ideal, so in our case, (0) is a prime ideal

and also a semiprime ideal, therefore R is a semiprime ring.

De�nition 4.2.1. An element a of a ring R is strongly nilpotent in case for every

sequence a0, a1, . . . in R if

a0 = a, and an+1 ∈ anRan for all n ≥ 0,

there must exist some n ∈ N with an = 0.

That this really is a statement about the nilpotence of a maybe made a bit more clear

with the following characterization.
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Lemma 4.2.2. An element a ∈ R is strongly nilpotent i� for every sequence x1, x2, . . . in

R, there exists some n ∈ N with

a(x1a(x2a(. . . a(xn−1a(xn)axn−1)a . . . a)x2)ax1)a = 0.
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proof:

⇒ : In our case, we have

x1 = a.

x2 = a(x1)a. (x2 ∈ x1Rx1)

x3 = a(x1a(x2)ax1)a. (x3 ∈ x2Rx2)

.

.

xn+1 = a(x1a(x2a(. . . a(xn−1a(xn)axn−1)a . . .)ax2)ax1)a.

= an = 0.

Therefore a(x1a(x2a(. . . a(xn−1a(xn)axn−1)a . . . a)x2)ax1)a = 0.

⇐ : reversible steps.

Theorem 4.2.1. The prime radical of a ring R is

P (R) = {a ∈ R : a is strongly nilpotent}.

proof:

Suppose that a /∈ P (R), so there is some prime ideal I with a /∈ I. Since I is prime, there

is a function σ : R/I → R/I such that σ(x) ∈ xRx/I for each x ∈ R/I.

Now de�ne a sequence a0, a1, . . . in R/I recursively by

a0 = a, and an+1 = σ(an), for all n ≥ 0
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Since an ̸= 0 for all n ∈ N, a is not strongly nilpotent.

On the other hand suppose that a ∈ R is not strongly nilpotent. Then there is a

sequence

a = a0, a1, a2, . . .

in R with 0 ̸= an+1 ∈ anRan for all n ≥ 0. Then there is an ideal I maximal w.r.t. an /∈ I for

all n ∈ P . We claim that I is prime. Indeed, suppose that K, J are two ideals neither con-

tained in I. Then by maximality, there must be some n ∈ N with an ∈ K+I and an ∈ J+I.

But then an+1 ∈ anRan ⊆ KJ + I. So KJ * I, and I is prime. Of course, this means that

a /∈ P (R).

Corollary 4.2.1. For every ring R, its prime radical P (R) is a nil ideal.

Corollary 4.2.2. For a ring R the following are equivalent:

1. R is semiprime.

2. P (R) = 0.

3. I2 = 0 implies I = 0 for every left (right/two-sided) ideal I of R.

4. aRa = 0 implies a = 0.

5. R has no non-zero nilpotent left (right/two-sided) ideals.

6. IJ = 0 implies I ∩ J = 0 for every pair I, J of left (right/two-sided) ideals.

proof:

(1) ⇔ (2) : This is simply by lemma (4.2.1).

(6) ⇒ (3) ⇒ (4) , and (3) ⇔ (5) are all trivial.
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(2) ⇒ (6) : If IJ = 0, then IJ ⊆ K for every prime ideal K, so I ∩ J ⊆ K for every prime

ideal K. Thus, by (2), I ∩ J = 0.

(4) ⇒ (2) : By (4) there is a map σ : R/{0} → R/{0} such that σ(a) ∈ aRa for each a ̸= 0

in R.

Then for each a ̸= 0 in R the sequence a, σ(a), σ2(a), . . . is never 0, so a is not strongly nilpo-

tent. Thus, by Theorem (4.2.1), P (R) = 0.

Remark 4.2.1. Any nilpotent element in R is in all prime ideals of R.

i.e., if nil(R) = {a ∈ R; an = 0 for some n ∈ N} and P (R) = ∩P , where the intersection

is taken over all prime ideals of R, then nil(R) ⊆ P (R).

We now have the following important Theorem which establishes a relationship between

the set of nilpotent elements and the prime ideals.

Theorem 4.2.2. The set of all nilpotent elements in a commutative ring R with 1 is the

intersection of all prime ideals, i.e., nil(R) = P (R).

4.3 J-Reduced Rings

In this section, we present the J-Reduced Rings and J-clean Rings that are related to The

Jacobson Radical.

De�nition 4.3.1. The ring R is called J-reduced whenever nilpotent elements belong to

the Jacobson radical J(R).

Lemma 4.3.1. If R/J(R) is a reduced ring, then R is J − reduced.

proof:

[10] Assume that an = 0 for some n ≥ 2. Then an = 0 ∈ R/J(R). Since R/J(R) is reduced,
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then a = 0 and so a ∈ J(R), as asserted.

Clearly, every reduced ring is J − reduced but the converse does not hold in general as

the following example shows.

Example 4.3.1. [10] Let R = Z4. Since J(R) = 2R, R/J(R) ∼= Z2 and so R/J(R) is

reduced. By Lemma (4.3.1), R is J − reduced but it is not reduced.

Let J∗(R) denote the subset {x ∈ R : ∃n ∈ N such that xn ∈ J(R)} of R. It is

obvious that J(R) ⊆ J∗(R), but the following example shows that the reverse inclusion

does not hold.

Example 4.3.2. [10] Let R denote the matrix ring M2(Z2). Then

{0 0

0 0

 ,

0 1

0 0

 ,

0 0

1 0

 ,

1 1

1 1

 = J∗(R)

}
(4.1)

while J(R) = 0.

Proposition 4.3.1. Let R be a ring. If J(R) = J∗(R), then R is J − reduced.

proof:

Assume that J(R) = J∗(R) and an = 0 for some n ≥ 2. Then an ∈ J(R) and so a ∈

J∗(R) = J(R), therefore R is J − reduced.

De�nition 4.3.2. A ring R is J-clean if for any element a ∈ R, there exists an idempotent

e ∈ R such that a− e ∈ J(R).

Corollary 4.3.1. [10] Every J − clean ring is J − reduced.

60



proof:

Assume that R is J − clean and let an = 0 for some n ≥ 2. Then there exists an idempo-

tent e ∈ R such that a − e = j ∈ J(R). Since an = 0, 1 − a = 1 − e − j ∈ U(R) (where

U(R) is the set of all invertible elements), and so 1 − e ∈ U(R). Hence e = 0. That is,

a = j ∈ J(R), as asserted.

De�nition 4.3.3. [21] We say that idempotents lift modulo I if every idempotent in

R/I can be lifted to R (i.e., for any idempotent a+ I of R/I, there exists an idempotent e

of R such that a+ I = e+ I).

Proposition 4.3.2. [10] Let R be a ring in which idempotents lift modulo J(R). If R is

J − reduced, then R/J(R) is abelian.

proof:

Assume that R is J − reduced and let e2 = e ∈ R. Since idempotents lift modulo J(R), we

may assume that e2 = e ∈ R. If r ∈ R, then (er − ere)2 = 0 and (re− ere)2 = 0 and so

er−ere ∈ J(R) and re−ere ∈ J(R) by assumption. Thus er−re ∈ J(R) and so er = re, as

required.

Theorem 4.3.1. [2] Let I be an ideal of a J − reduced ring R, and let S be a subring of

R containing I. If S/I is J − reduced, then so is S.

proof:

Given an = 0 in S, then a ∈ J(R) as R is J-reduced. For any s ∈ S, we can �nd some

r ∈ R such that r(1− as) = 1. Furthermore, a ∈ J(S/I). Hence, we can �nd some t ∈ S

such that 1− (1−as)t ∈ I. This implies that r− r(1−as)t ∈ I, and so r− t ∈ I. We infer

that r ∈ S. Therefore 1− as ∈ S is left invertible. Likewise, 1− as ∈ S is right invertible.
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Hence, 1− as is invertible , and then a ∈ J(S). Therefore S is J − reduced.

Corollary 4.3.2. Let I be an ideal of a J − reduced ring R, and let S be a J − reduced

subring of R. Then I + S is J − reduced.

proof:

Obviously, I ⊆ I+S ⊆ R. It is easy to check that (I+S)/I is J−reduced. Therefore I+S is

J−reduced, by Theorem (4.3.1).

Proposition 4.3.3. Let I be a nil ideal of a ring R. Then the following are equivalent.

(1) R is J − reduced.

(2) R/I is J − reduced.

proof:

(1) ⇒ (2): Write an = 0, then an ∈ I. As I is nil, there exists some m ∈ N such that

amn = 0. Hence, a ∈ J(R), and so a ∈ J(R/I), as desired.

(2) ⇒ (1): Assume that an = 0 for some n ∈ N. Then an = 0 and so a ∈ J(R/I). For any

r ∈ R, 1−ar is invertible in (R/I), we have some t ∈ R such that 1−(1−ar)t ∈ I. Since I is

nil, we get (1−ar)t is invertible in R, and so 1−ar is invertible . This implies that a ∈ J(R),

as desired.

Proposition 4.3.4. A ring R is J − reduced if and only if eRe is J − reduced for all

idempotent elements e ∈ R.

proof:

If (eae)n = 0 in eRe, then (eae)n = 0 in R. Since R is J − reduced, then eae ∈ J(R), and

so eae ∈ eJ(R)e. That is, eae ∈ J(eRe). Therefore eRe is J − reduced.
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The converse is trivial.
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